Evaluation of Definite Integral-Different Methods

IMPORTANT

Evaluation of Definite Integral-Different Methods: Overview

This topic covers concepts, such as, Properties of Definite Integrals, Finding Definite Integration Using Substitution Method, Finding Definite Integration Using By-parts Method and Reduction Formulae in Definite Integralsetc.

Important Questions on Evaluation of Definite Integral-Different Methods

HARD
IMPORTANT

Find 0 f a x + x a · nx x dx

HARD
IMPORTANT

The value of 0dxx2+2x cosθ+1 is 

HARD
IMPORTANT

I=0πx2 sin2xsinπ2cosx2x-π dx

MEDIUM
IMPORTANT

For f x = x 4 + x , let I 1 = 0 π f cos x  dx and I 2 = 0 π / 2 f sin x  dx   then I 1 I 2 has the value of equal to

MEDIUM
IMPORTANT

The value of  -50fxdx,  where   f( x )=| x |+| x+3 |+| x+6 | would be :

MEDIUM
IMPORTANT

The value of : 024x2dx would be:

MEDIUM
IMPORTANT

If 0af(x)dx=0af(ax)dx, then the value of 0π2dx1+tanx is

MEDIUM
IMPORTANT

The value of 1e37πsin(πnx)xdx is

EASY
IMPORTANT

The value of  1e37πsinπlnxxdx  is:

EASY
IMPORTANT

For n>0, 02πxsin2nxsin2nx+cos2nxdx=

MEDIUM
IMPORTANT

For   n>0, 0 2π x sin 2n x sin 2n x+ cos 2n x dx=

EASY
IMPORTANT

The value of   2 3 x 5x + x dx  is:

HARD
IMPORTANT

The integral  01.5x2dx, where . denotes the greatest integer function, equals:

MEDIUM
IMPORTANT

If Im,n=01tm1+tndt, then the expression for Im,n in terms of Im+1,n1 where m, nN is

EASY
IMPORTANT

Let   f(x)=x[x],  for every real number x, where [x] is the integral part of x. Then 1 1 f(x) dx is

HARD
IMPORTANT

If   0 x f(t)dt=x+ x 1 tf(t) dt,  then the value of   f(1)  is

HARD
IMPORTANT

 π/43π/4dx1+cosx  is equal to

EASY
IMPORTANT

Let f be a positive function.

Let I1=1kkxfx1xdx, I2=1kkfx1xdx, where 2k1>0. Then I1I2 is